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Abstract
In this paper, the stochastic randomization is introduced in two different multi-
value cellular automata (CA) models in order to model the bicycle flow. It
is shown that with the randomization effect considered, the multiple states
in the deterministic multi-value CA models disappear and the unique flow-
density relations (fundamental diagrams) exist. The fundamental diagrams,
the spacetime plots of the two models, are studied in detail. It is found that the
transition from free flow to congested flow is smooth in one model while it is
of second order in the other model. The comparison of the results of the two
models indicates that in the bicycle flow, the priority of the movement should
be given to slow bicycles in order to reach a larger maximum flow rate.

PACS numbers: 45.70.Vn, 05.70.Fh, 02.60.Cb

1. Introduction

In the past few decades, traffic problems have attracted the interest of many physicists [1–4].
Traffic flow is a kind of many-body system of strongly interacting cars and occurrence of traffic
jams can be regarded as a kind of phase transition. To understand the behaviour of the traffic
flow, various traffic-flow models have been proposed and studied, including car-following
models, cellular automaton (CA) models, gas-kinetic models and hydrodynamic models
[5–13]. Compared to other dynamical approaches, CA models are conceptually simpler,
and can be easily implemented on computers for numerical investigations.

The rule-184 CA [14] has been widely used as a prototype for traffic flow. In 1992, Nagel
and Schreckenberg proposed the well-known Nagel–Schreckenberg (NS) model [6]. As an
extension of rule-184 CA, velocities vmax > 1 are allowed in the NS model. The NS model can
reproduce some basic phenomena encountered in real traffic. However, it cannot explain all
experimental results. Therefore, several improved versions of the NS model were proposed,
such as the slow-to-start (STS) models [7], etc. Nevertheless, these NS-based CA models
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cannot describe real congested patterns at freeway bottlenecks. Based on the three-phase
traffic theory, Kerner et al presented a new CA model, which can reproduce the real congested
patterns (see e.g. [15] and references therein).

Recently, Nishinari and Takahashi [16, 17] have proposed a family of multi-value CA
models. Different from previous ones, in these models, each site is assumed to hold L cars at
most. The basis of the family is obtained from an ultradiscretization of the Burgers equation,
so it is called Burgers cellular automaton (BCA). Its evolution equation is

Ut+1
j = Ut

j + min
(
Ut

j−1, L − Ut
j

) − min
(
Ut

j , L − Ut
j+1

)
(1)

where Ut
j represents the number of cars at site j and time t. If it is assumed that the road

is an L-lane freeway, then the model can describe the multi-lane traffic without explicitly
considering the lane-changing rule.

The maximum velocity of cars in BCA is 1, and Nishinari and Takahashi have extended
BCA for the case of maximum velocity 2 [17] and presented two extended BCA (EBCA)
models: EBCA1 and EBCA2. However, extension of BCA to general velocities is found to
be difficult since the number of neighbouring sites becomes large [18]. In this sense, the BCA
family is not appropriate for vehicle flow because the maximum velocities of vehicles are
always quite large (generally taken as 5).

Nevertheless, we argue that the BCA family is suitable to describe the bicycle flow for the
following reasons: (i) the maximum velocities of bicycles are relatively small (it can be taken
as 2 (i.e., 14.4 km h−1) if each site is assumed to be 2 m and one time step corresponds to 1 s)1,
(ii) bicycle lanes are not so distinctly partitioned as vehicle lanes, and the lane-changing
behaviour of bicycles is much more complicated than that of vehicles; (iii) if one insists on
modelling the lane-changing behaviour of bicycles explicitly, one will face very complex rules
and calculations because the number of bicycle lanes is usually quite large.

For the above-mentioned reasons, the EBCA models are used to model the bicycle flow in
this paper2. In the works of Nishinari and Takahashi, only the deterministic case is studied. In
real traffic, bicycles are considered to be always perturbed by some traffic noises. Therefore,
we introduce the stochastic randomization in EBCA1 and EBCA2 in this paper and study the
randomization effect in the multi-value CA models.

This paper is organized as follows. In section 2, the EBCA1 and the EBCA2 are briefly
reviewed and the stochastic randomization is introduced. In section 3, the simulation results
are presented and analysed. The conclusions are given in section 4.

2. Stochastic multi-value models

In the EBCA models, a bicycle is assumed to be able to advance by two sites per time step.
In the EBCA1 model, slow bicycles with speed 1 move prior to fast ones with speed 2. The
bicycle movement from t to t + 1 consists of the following two successive procedures:

(a) bicycles move to their next site if the site is not fully occupied;
(b) only bicycles which moved in procedure (a) can move another one site if their next site is

not fully occupied after procedure (a).

Therefore, the evolution equation of the EBCA1 is given by

Ut+1
j = Ut

j + bt
j−1 − bt

j + ct
j−2 − ct

j−1. (2)
1 The disorder effects may play an important role in bicycle flow. In this paper, the study is confined to homogeneous
riders with maximum velocity 2. The bicycle flow of heterogeneous riders will be our future work.
2 According to our daily experiences in China, there usually exist unidirectional bicycle lanes alongside vehicle
lanes. Therefore, counterflow of bicycles rarely appears and it is not investigated here.
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Here bt
j = min

(
Ut

j , L − Ut
j+1

)
represents the number of moving bicycles at site j and time t

in procedure (a); ct
j = min

(
bt

j , L − Ut
j+2 − bt

j+1 + bt
j+2

)
represents the number of moving

bicycles that can move in procedure (b).
To introduce stochastic randomization, we suppose that the number of bicycles that can

move two sites decreases by 1 with the probability p. Thus, the parallel update rules of
stochastic EBCA1 are as follows:

1. calculation of bt
j and ct

j (j = 1, 2, . . . , K,K is the number of sites);
2. randomization: ct

j = max
(
ct
j − 1, 0

)
with probability p;

3. update of Uj according to equation (2).

In contrast to EBCA1, fast bicycles with speed 2 move prior to slow ones with speed 1 in
the EBCA2. Therefore, the evolution equation of the EBCA2 is given by

Ut+1
j = Ut

j + at
j−2 − at

j + dt
j−1 − dt

j . (3)

Here at
j = min

(
Ut

j , L − Ut
j+1, L − Ut

j+2

)
represents the number of bicycles at site j that

can move two sites forward; dt
j = min

(
bt

j − at
j , L − Ut

j+1 − at
j−1

)
represents the number of

bicycles that move only one site forward.
Similarly to EBCA1, the stochastic randomization is introduced by assuming that the

number of bicycles that can move two sites decreases by 1 with the probability p. Thus, the
parallel update rules of stochastic EBCA2 are as follows:

1. calculation of at
j , b

t
j and dt

j (j = 1, 2, . . . , K);
2. randomization: at

j = max
(
at

j − 1, 0
)

with probability p;
3. update of Uj according to equation (3).

3. Simulation results

In this section, the simulation results of stochastic EBCA1 and EBCA2 are presented and
discussed. Firstly we study stochastic EBCA2.

3.1. Stochastic EBCA2

In figure 1, we show the fundamental diagrams of EBCA2. Note that the flow rate Q is defined
by

Qt = 1

KL

K∑

j=1

(
at

j−2 + at
j−1 + dt

j−1

)
(4)

because at
j−1 represents the number of bicycles that pass the site j .3 The parameter values

are L = 4,K = 100. The periodic boundary condition is applied. Figure 1(a) shows the
fundamental diagram of deterministic EBCA2. One can see that multiple states exist around
a critical density ρc, and this phenomenon has been explained in [17]. Note that in the
fundamental diagram, the initial conditions are given by a finite random state, therefore, such
highly ordered high flow states as . . . 22222 . . . are not reached.

Figure 1(b) shows the fundamental diagrams of stochastic EBCA2 of different p. One can
see that with the stochastic randomization introduced, the multiple states disappear and the
unique flow–density relation occurs instead. This means that the multiple states are not stable
3 Note that at

j−1 and at
j−2 here as well as ct

j−2 in equation (5) are the actual numbers of bicycles that move two sites
when the randomization is considered.
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(a)

(c)

(b)

Figure 1. The fundamental diagram of EBCA2 . In (a) p = 0; (b) p = 0.2, 0.5, 0.8; (c) p = 1.
In (b) ρc1, ρc2 and ρc3 denote the critical densities for p = 0.2, 0.5, 0.8, respectvely. In (c) the
solid lines are the analytical result and the points are the simulation result.

with respect to the stochastic randmization. (One can compare the results with those of the
velocity effect (VE) model [19]. In the deterministic VE model, the hysteresis phenomenon
and metastable states exist, but they disappear when the randomization is introduced.) With
the increase in p, the maximum flow decreases, the critical density ρc at which the maximum
flow is reached increases. Moreover, we note that the transition from the free flow to congested
flow is smooth in the stochastic EBCA2.

Next we investigate the spacetime structure of the stochastic EBCA2. To this end, we
choose p = 0.5 for the representation. For this case, the critical density is approximately
0.393. Figure 2 shows the spacetime plots of the stochastic EBCA2 starting from random
initial conditions. When the density is low, the bicycles are in free flow and the sites are
seldom in the state U = 4 (not shown). However, when the density is near to the critical
density, small jams begin to appear (shown by the arrows in figure 2(a)). We also note that
the sites in the state U = 4 are not successive, which means that the jams are sparse4.

When the density is a little larger than the critical density, the system is in a complex
state: it transforms between the state of one large sparse jam (figure 2(b)) and the state of
many small sparse jams (figure 2(c)). If one continues increasing the density, a compact jam
appears in the sparse jam (figure 2(d )).

4 A site is defined to be in a sparse jam if no bicycle in the site can move with velocity 2 and in a compact jam if no
bicycle can move.
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Figure 2. The spacetime plots of stochastic EBCA2. In (a) ρ = 0.38, (b), (c) ρ = 0.4325,
(d ) ρ = 0.5325. The bicycles move from left to right and the vertical direction (down) is
(increasing) time. Here only the sites in the state U = 4 are shown. (b) and (c) start from the same
initial condition and they display the system states at different time intervals.
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Figure 3. The spacetime plot of stochastic EBCA2 starting from a megajam. Here ρ = 0.6.

Figure 4. The spacetime plot of stochastic EBCA2. Here ρ = 0.37, p = 1.

Nevertheless, we should point out that different spacetime structures are obtained for
density ρ � 0.5 if starting from a megajam, for example, see figure 3. In this case, the system
is a coexistence of sparse jam and compact jam, and the stochastic randomization does not
work because no bicycle can move with speed 2.

Finally, we focus on the special case p = 1. The fundamental diagram of p = 1 is shown
in figure 1(c). Different from 0 < p < 1, the fundamental diagram is composed of three
straight lines. When ρ < ρc1, our simulations show that the maximum value of Uj is 1. Thus,
every bicycle can move with speed 2 if the randomization is not considered. Obviously when
the randomization is considered, the average speed of a bicycle is 2 − p, so Q = (2 − p) × ρ.
When ρc1 < ρ < ρc2, our simulations show that the maximum value of Uj is 3 and the
minimum value of Uj is 1. Moreover, the value of U of the successive two sites preceding
the site Uj = 3 is 1 (shown by the arrows in figure 4). Therefore, every bicycle can also
move with speed 2 if the randomization is not considered. The average number of bicycles
at site j is ρ × L. As a result, the average speed of the bicycles at site j is calculated by
(ρ×L−1)×2+1×(2−p)

ρ×L
= 2 − p

ρ×L
. So Q = 2 × ρ − p/L. When ρ > ρc2, the average speed

of the bicycles is determined by the vacancies. Thus, the average speed is calculated by
L×K−L×K×ρ

L×K×ρ
= 1/ρ − 1. So Q = (1 − ρ). The analytical result is also shown in figure 1(c),

and it is in exact agreement with the simulations.

3.2. Stochastic EBCA1

In figure 5, we show the fundamental diagrams of EBCA1. Here the flow rate Q is defined by

Qt = 1

KL

K∑

j=1

(
bt

j−1 + ct
j−2

)
. (5)

The parameter value is still L = 4. The periodic boundary condition is applied.
Figure 4(a) shows the fundamental diagram of deterministic EBCA2. The multiple state

effect is enhanced when compared with that of the EBCA2. Similarly, highly-ordered high-
flow states are not reached in the fundamental diagram because of the finite random initial
conditions.

Figure 4(b) shows the fundamental diagrams of stochastic EBCA1 of different p. As
in EBCA2, with the stochastic randomization introduced, the multiple states disappear and
the unique flow-density relation occurs. This point needs to be emphasized because in the
deterministic EBCA1, there exist some states stable against a weak perturbation [17].
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(b)(a)

Figure 5. The fundamental diagram of the EBCA1. In (a) p = 0; (b) p = 0.2, 0.5, 0.8. In (b)
K = 5000 is used because a small value of K leads to the finite size effect. We suppose the finite
size effect correlates with the second-order phase transition (see the main text). In (b) ρc1, ρc2 and
ρc3 denote the critical densities for p = 0.2, 0.5, 0.8, respectvely.

With the increase in p, the maximum flow decreases, the critical density ρc at which the
maximum flow is reached increases. However, we note that the transition from free flow
to congested flow is sharp in the stochastic EBCA1, it is a second-order phase transition.
We can compare the phase transitions of stochastic EBCA2 and EBCA1 with that in the NS
model. In the NS model with p > 0, the transition from free flow to congested flow is smooth
(cf stochastic EBCA2). However, it is a second-order phase transition for the NS model
when p = 0 because it is a sharp transition from the free flow branch to the congested flow
branch (cf stochastic EBCA1). To our knowledge, it is the first stochastic CA model that
shows a second-order phase transition from free flow to congested flow. The reason for this
second-order phase transition will be investigated in our future work.

As in EBCA2, we investigate the spacetime structure of the stochastic EBCA1. We also
choose p = 0.5 for representation. For this case, the critical density is approximately 0.383.
Figure 5 shows the spacetime plots of the stochastic EBCA1. Similarly, when the density is
low, the bicycles are in free flow and the sites are seldom in the state U = 4 (not shown).
However, different from EBCA2, even when the density is near to the critical density, there is
no jam although the sites in the state U = 4 appear (figure 6(a)). This may partly explain the
existence of the second-order phase transition. When the density exceeds the critical density,
a compact jam appears (figure 6(b)).

When starting from a megajam, the spacetime plots are somewhat different for large
densities, for example, see figures 6(c), (d ). One obtains a large compact jam from the
megajam while many small compact jams from random initial conditions.

We also focus on the special case p = 1. The simulations show that the fundamental
diagram of the EBCA1 is identical to that of the EBCA2. For ρ < ρc1, the maximum value
of Uj is 1. When ρ > ρc2, the average speed of the bicycles is determined by the vacancies.
These are similar to the EBCA2. However, in the density range ρc1 < ρ < ρc2, although
we still have the maximum value of Uj is 3 and the minimum value of Uj is 1, the value of
U of the site j + 2 preceding the site Uj = 3 may be 2 (shown by the arrows in figure 7).
But this can still guarantee that every bicycle moves with speed 2 if the randomization is not
considered. Thus, the flow is still calculated as in EBCA2.

Finally, we compare the fundamental diagrams of stochastic EBCA1 and EBCA2 in
figure 8. One can see that the maximum flow rate of the EBCA1 is larger than that of EBCA2.
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Figure 6. The spacetime plots of stochastic EBCA1. In (a) ρ = 0.38; (b) ρ = 0.4125; (c), (d )
ρ = 0.555. Part (c) starts from a megajam and (a), (b), (d) start from random initial conditions.
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Figure 7. The spacetime plot of stochastic EBCA1. Here ρ = 0.38, p = 1.

Figure 8. The comparison of stochastic EBCA1 (solid) and EBCA2 (dashed). From top to bottom,
p = 0.2, 0.5, 0.8.

This enlightens us to suggest that in the bicycle flow, priority of movement should be given to
slow bicycles in order to reach a larger maximum flow rate.

4. Conclusion

In this paper, the stochastic randomization effect in the two multi-value CA models: EBCA1
and EBCA2, has been investigated. We have demonstrated that the multi-value CA models
are suitable to describe the bicycle flow.

The simulations show that with the randomization effect considered, the multiple states in
the deterministic multi-value CA models disappear and unique flow–density relations occur.
The fundamental diagrams, the spacetime plots of the two models, are studied in detail. It is
found that the transition from free flow to congested flow is smooth in stochastic EBCA2 while
it is second order in stochastic EBCA1. The special case of p = 1 in both stochastic EBCA2
and stochastic EBCA1 is studied. The analytical result is presented and it is in exact agreement
with the simulation results. The comparison of the results of the two models indicates that
in the bicycle flow, priority of movement should be given to slow bicycles in order to reach a
larger maximum flow rate.

In our future work, the applicability of our results to real bicycle flow and the limitations
need to be examined. In this context, it would be interesting to know whether, e.g., the
jamming transition in the model has ever been observed empirically for bicycle flow. In fact,
the observation of real bicycle flow is in preparation.
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